Friday, May 22, 2020

Comparative essay between two poems namely, Half - Caste...

Comparative essay between two poems namely, Half - Caste by John Agard and Unrelated Incidents by Tom Leonard. John Agard and Unrelated Incidents by Tom Leonard. You can clearly see before you begin to read these poems that they are set out differently to your average poem. For example in Unrelated Incidents that there are no more than four words per poem. The punctuation in Unrelated Incidents is based on the phanetic way of spelling, this means that you spell the way speak and pronounce words. The poems is also meant to be spoken in a Glaswegian accent. In Half - Caste it’s spelt and meant to be spoken in a Caribbean Patois. In both poems they’re defending the way that they are (The colour of his skin in Half - Caste†¦show more content†¦He says he is interested in the political nature of voice in British culture. The poem is carefully written in a phonetic version of the Glasgow accent. If you pronounce it exactly as its written, it should sound more or less like a Glaswegian voice. Tom Leonard has played with language in a number of ways, apart from the phonetic spelling: there is almost no punctuation, there are lots of slang and colloquial words like â€Å"scruffâ€Å" and â€Å"belt upâ€Å", the newsreader talks directly to the reader . Tom Leonard is arguing that this is the way the media thinks about him. He believes that the media see the viewers in Glasgow, or indeed the viewers in most other parts of Britain, as â€Å"scruffsâ€Å". Which isn’t fair and is a form of racism. The humour has a satirical edge, he uses humour to make serious criticisms. In the persona of the announcer he states that you wouldnt want him to give the news in any other accent or dialect, because you wouldnt accept that it was true, a voice speaking in a working class accent and using slang is given less credit and has less authority than a BBC voice. Halfe - Cast I think that the gentleman writing this poem (in a rather strange vernacular I own) is somewhat confused. To my mind half-caste refers to one born of two parents, one of a race where the predominant skin colour is black and the other typically white European, or whiteShow MoreRelatedA Picatrix Miscellany52019 Words   |  209 Pagesthe Fashioning of Images† VI. The Picatrix: Lunar Mansions in Western Astrology VII. W. B. Yeats and â€Å"A Vision:† The Arab Mansions of the Moon On Ritual and Talismans Picatrix Astrological Magic Aphorisms Extracts on Planetary Ritual Clothing Twenty Two Benefic Astrological Talismans Astrology, Magical Talismans and the Mansions of the Moon Ritual of Jupiter An Astrological Election of Mercury in the First Face of Virgo for Wealth and Growth XIV. Invocation of Mercury On the Decans and Tarot XV. XVIRead MoreStephen P. Robbins Timothy A. Judge (2011) Organizational Behaviour 15th Edition New Jersey: Prentice Hall393164 Words   |  1573 PagesPerception? 166 Factors That Influence Perception 167 165 Person Perception: Making Judgments About Others 168 Attribution Theory 168 †¢ Common Shortcuts in Judging Others 170 †¢ Specific Applications of Shortcuts in Organizations 173 The Link Between Perception and Individual Decision Making 174 Decision Making in Organizations 175 The Rational Model, Bounded Rationality, and Intuition 175 †¢ Common Biases and Errors in Decision Making 177 Influences on Decision Making: Individual Differences and

Friday, May 8, 2020

The Struggles of Families in Poverty in The Jungle, by...

â€Å"In twentieth-century America the history of poverty begins with most working people living on the edge of destitution, periodically short of food, fuel, clothing, and shelter† (Poverty in 20th Century America). Poverty possesses the ability to completely degrade a person, as well as a family, but it can also make that person and family stronger. In The Jungle, by Upton Sinclair, a family of immigrants has to live in severe poverty in Packingtown, a suburb of Chicago. The poverty degrades the family numerous times, and even brings them close to death. Originally the family has each other to fall back on, but eventually members of the family must face numerous struggles on their own, including â€Å"hoboing it† and becoming a prostitute. The†¦show more content†¦Language further hinders the family. Poverty also has detrimental effects on families. Poor children possess a greater risk for iron deficiency, stunted growth, and asthma. â€Å"For parents struggling to raise a child, poverty adds extensive stress to the family† (Driscoll). As a result of constantly working, Jurgis rarely spends time with his son, Antanas. However, when he suffers an injury he finally gets this opportunity, â€Å"So Jurgis would begin to forget and be happy, because he was in a world where there was a thing so beautiful as the smile of little Antanas† (Sinclair 134-135). While the family remains intact, they do not remain that way for very long. Jonas leaves the family before long, and eventually Jurgis leaves the family as well. â€Å"‘No’, she answered, ‘I don’t blame you. We never have--any of us. You did your best--the job was too much for us’† (Sinclair 332). Marija clearly gave up hope for their family long ago. Another aspect of poverty remains the way a person looks at the family. Regardless of a person’s self confidence and secureness, one cannot help but to care about another person’s opinion. The family receives the evil eye all the time. Jurgis even gets blacklisted from Packingtown, taking away his ability to get a job and support the family. This occurs as a result of Jurgis protecting his wife from her boss who imposed his will on her. â€Å"They gazed at him with pitying eyes--poor devil, he was blacklisted!†¦ he could neverShow MoreRelatedUpton Sinclair and His Influence on Society Essay1552 Words   |  7 PagesUpton Sinclair, the famous American author, wanted to be a great influence on society. He was born in 1878 in Baltimore, Maryland, from a family of Southern aristocracy. His father was an alcoholic and his mother came from a wealthy family. When Sinclair was ten, the family moved to New York. His father sold hats and spent his evenings in bars com ing home drunk every night. As a child, Sinclair was an excellent reader and scholar. By the age of fourteen, he began writing in his spare time. Read MoreModern Day Relevance of Sinclairs The Jungle Essay911 Words   |  4 PagesThe Jungle was first published in 1906. Contemporary critics disagree about whether or not the novel has any â€Å"relevance† for modern readers. What do YOU think? I believe this novel has somewhat of a relevance for modern readers in today’s society. In the world of economic competition that we live in today, many thrive and many are left to dig through trash cans. It has been a constant struggle throughout the modern history of society. One widely prescribed example of this struggle is Upton SinclairsRead MoreSocialism in The Jungle1715 Words   |  7 PagesSocialism in â€Å"The Jungle† By Tyler Dobson Sinclair’s  The Jungle  is a novel that tends to advocate for socialism as a remedy for the evils of capitalism that has dominated a society. Upton Sinclair’s piece was written in 1906, at a time when many European immigrants had migrated to the United States with the hope of becoming prosperous in their lives. However, their expectations were not met as some of them ended up being unemployed and those who managed to get jobs like Jurgis Rudkus inRead MoreThe Negative Effects Of The Family In Upton Sinclairs The Jungle?961 Words   |  4 Pages1900s there were already more than 10 million immigrants living in America. Upton Sinclair’s The Jungle reveals the struggles and hardships of a family that immigrates to the United States from Lithuania during the 1900s. Although many immigrant families came to America in search of a better life, soon most found themselves barely surviving with no job, food, shelter, or money. As is the case of the family in The Jungle. The novel not only unveils the corruption of the political and economic systemRead MoreJohn Steinbeck s Harvest Gypsies 1664 Words   |  7 PagesThe struggle to obtain social reform in the United States for the working class steadily increased with the urbanization of cities and the expansion of industrialization during the 1900’s. This brought about the publication of several works that challenged the government’s policies. As Upton Sinclair addresses in The Jungle, industry workers were refused the basic human rights that the government vowed to protect. Harvest Gypsies, written by John Steinbeck just 30 years later, brought ruralRead MoreThe Jungle By Upton Sinclair1334 Words   |  6 Pages1900s there were already more than 10 million immigrants living in America. Upton Sinclair’s The Jungle reveals the struggles and hardships of a family that immigrated to the United States from Lithuania during the 1900s. Although many immigrant families came to America in search of a better life, soon most found themselves barely surviving with no job, food, shelter, or money. As is the case of the family in The Jungle. The novel not only unveils the corruption of the political and economic systemRead MoreA Cry for Socialist Reform in The Jungle by Upton Sinclair Essay2412 Words   |  10 PagesA Cry for Socialist Reform in The Jungle by Upton Sinclair The Jungle is usually associated with the federal legislation it provoked. Americans were horrified to learn about the terrible sanitation under which their meat products were packed. They were even more horrified to learn that the labels listing the ingredients in tinned meat products were full of lies. The revelation that rotten and diseased meat was sold without a single consideration for public health infuriated the American publicRead MoreUpton Sinclair s The Jungle1438 Words   |  6 PagesThe Jungle and Today Upton Sinclair’s novel, The Jungle, follows the life of Jurgis Rudkus, his Lithuanian family, and friends who all recently immigrated to Chicago in search of a better life. Jurgis, Ona, and the rest of their family find jobs in Packington, the meatpacking industry of Chicago. Quickly they discover the difficulties of surviving in the United States during the early 1900’s through financial troubles, unreliable work, illness, and swindling. Through his novel, Sinclair exploitsRead MoreUpton Sinclair s The Jungle1989 Words   |  8 Pagesbe turned away on a technicality. Even if they made it to America, they faced discrimination and poverty. It was a lose-lose situation for the Haitians. Upton Sinclair seemed to have a similar view of the Lithuanian immigrants of the 1800s. Upton Sinclair is the author of The Jungle, a book that follows a family of Lithuanian immigrants as they travel to and try to make their way in America. Sinclair used the book to speak out about the issues of America through the eyes of immigrants, includingRead MoreThe Jungle Of Upton Sinclair1670 Words   |  7 Pages Amanda Poe The Jungle Paper Dr. Barnhart 03/10/17 The Jungle Upton Sinclair came from a life of struggle. He did not start school until after he was ten years old, but was in college by the age of fourteen. He attended City College of New York until he was eighteen, and then he attended Columbia postgraduate. He studied literature, music, history, and philosophy. Sinclair’s childhood was a rough one. He saw two different sides to social class. Since his father was an alcoholic and would

Wednesday, May 6, 2020

Designing a Toasting Oven in Order to Produce Corn Flakes Free Essays

string(60) " high heat and mass transfer rates rapidly dry the product\." Prof. Dr. Suat Ungan Fd. We will write a custom essay sample on Designing a Toasting Oven in Order to Produce Corn Flakes or any similar topic only for you Order Now E. 425 Food Engineering Design Coordinator Middle East Technical University Food Engineering Department Ankara 06531 November 25, 2011 Dear Mr. Ungan, Please accept the accompanying Work Term Report, aimed designing a toasting oven in order to produce corn flakes. In the designed system 10 tons corn flakes per day is produced. After some processes, corn flakes enters the roasting oven at 20% humidity and exits at 4%humidity. The roasting oven can operate at ( ±10 ? C) 225 0C. Toasting oven is designed by considering its length, area and operating temperature. Optimizations are done according to these factors on the cost of the total design. In the design system, rotary drum drier is used. 350 days of the year plant works and production occurs 16 hours in a day. Corn flakes enter the oven at 225 0C . Amount of air is calculated as 0,648 kg dry air/s . Length of the drier is calculated as 2. 27 m. in the result of optimizations done according to proper drying time and dryer diameter. Heat energy needed to raise the inlet temperature of air to 225 0C, is found as 157kw and heat loss is found as 23. 6kw. Through these data, total investment which contains dryer cost and electricity cost is found as 92794. 98TL. Sincerely, group 3 members TABLE OF CONTENT SUMMARY In this design a rotary dryer is designed for drying of corn flakes which have the moisture content 20%. Corn flakes are dried with air 9 % moisture content. The production is done for 16 hours in a day and 10 tons corn flakes are produced per day. In production process, corn flakes are cooked under pressure. After cooking step, big masses are broken to pieces and sent to driers in order to get the moisture level at 20%. After this process, roduct is flaked between large steel cylinders and cooled with internal water flow. Soft flakes are sent to rotary dryers in order to dehydration to 4% final moisture content and toasting. In the toasting oven, flakes are exposed to 225 0C air for 2-3 min. The drier length is calculated as 2. 27 m with the diameter of 0. 082m with the assumption of 4%moisture content inlet air and 9%conten t outlet air. Flow rate of feed is calculated as 0. 206kg/s. Mass flow rate of the inlet air is calculated as 0,648 kg dry air/s. Energy needed for bring the temperature of air to 225 0C is calculated as 157kw and heat loss in the system is 23. kw. By making optimizations total capital investment is calculated as92794. 98TL which includes 84881TL electricity cost and 7913TL dryer cost. Finally by making optimizations, in order to have minimum length and suitable energy for the drier, 215 0C is chosen the best temperature for the inlet air. I. INTRODUCTION Rotary dryers potentially represent the oldest continuous and undoubtedly the most common high volume dryer used in industry, and it has evolved more adaptations of the technology than any other dryer classification. [1] Drying the materials is an important consumption process. It is also one of the important parts in cement production process, and affects the quality and consumption of the grinding machine. Drum dryer is the main equipment of drying materials, it has simple structure, reliable operation, and convenient to manage. However there are some problems which are huge heat loss, low thermal efficiency, high heat consumption, more dust, and difficult to control the moisture out of the machine. It plays a significant role in improving drying technology level and thermal efficiency in drying process, reduce the thermal and production lost. 2] In this design we are asked to design a rotary drier which works 16 hours in a day and produces 10 tones corn flakes per day. Also it is mentioned that, corn flakes enters to drier at 20 %humidity and exits 3-5%humidity. This report is about designing a rotary dryer with its dimensions for considering to get the minimum total cost. Optimizations are done according to inlet temperature of the air to the drier. In the design system heat needed for heating the inlet temperatures and length of the rotary dryer as material cost is thought, and optimization is done by considering minimum total cost for the system. II. PREVIOUS WORK Drying is perhaps the oldest, most common operation of chemical engineering unit operations. Over four hundred types of dryers have been reported in the literature while over one hundred distinct types are commonly available[3] Drying occurs by effecting vaporization of the liquid by providing heat to the wet feedstock. Heat may be supplied by convection (direct dryers), by conduction (contact or indirect dryers), radiation or by microwave. Over 85 percent of industrial dryers are of the convective type with hot air or direct combustion gases as the drying medium. Over 99 percent of the applications involve removal of water. [3] * Rotary Dryer; All rotary dryers have the feed materials passing through a rotating cylinder termed a drum. It is a cylindrical shell usually constructed from steel plates, slightly inclined, typically 0. 3-5 m in diameter, 5-90 m in length and rotating at 1-5 rpm. It is operated in some cases with a negative internal pressure (vacuum) to prevent dust escape. Depending on the arrangement for the contact between the drying gas and the solids, a dryer may be classified as direct or indirect, con-current or counter-current. Noted for their flexibility and heavy construction, rotary dryers are less sensitive to wide fluctuations in throughput and product size. [4] * Pneumatic/Flash Dryer;The pneumatic or ‘flash’ dryer is used with products that dry rapidly owing to the easy removal of free moisture or where any needed diffusion to the surface occurs readily. Drying takes place in a matter of seconds. Wet material is mixed with a stream of heated air (or other gas), which conveys it through a drying duct where high heat and mass transfer rates rapidly dry the product. You read "Designing a Toasting Oven in Order to Produce Corn Flakes" in category "Essay examples" Applications include the drying of filter cakes, crystals, granules, pastes, sludge and slurries; in fact almost any material where a powdered product is required. * Spray Dryers; Spray drying has been one of the most energy-consuming drying processes, yet it remains one that is essential to the production of dairy and food product powders. Basically, spray drying is accomplished by atomizing feed liquid into a drying chamber, where the small droplets are subjected to a stream of hot air and converted to powder particles. As the powder is discharged from the drying chamber, it is passed through a powder/air separator and collected for packaging. Most spray dryers are equipped for primary powder collection at efficiency of about 99. 5%, and most can be supplied with secondary collection equipment if necessary * Fluidised Bed Dryer; Fluid bed dryers are found throughout all industries, from heavy mining through food, fine chemicals and pharmaceuticals. They provide an effective method of drying relatively free flowing particles with a reasonably narrow particle size distribution. In general, fluid bed dryers operate on a through-the-bed flow pattern with the gas passing through the product perpendicular to the direction of travel. The dry product is discharged from the same section. * Hot Air Dryer- Stenter; Fabric drying is usually carried out on either drying cylinders (intermediate drying) or on stenters (final drying). Drying cylinders are basically a series of steam-heated drums over which the fabric passes. It has the drawback of pulling the fabric and effectively reducing its width. For this reason it tends to be used for intermediate drying * Contact Drying- Steam Cylinders/Can; This is the simplest and cheapest mode of drying woven fabrics. It is mainly used for intermediate drying rather than final drying (since there is no means of controlling fabric width) and for pre drying prior to stentering. * Infra red drying; Infrared energy can be generated by electric or gas infrared heaters or emitters. Each energy source has advantages and disadvantages. Typically, gas infrared systems are more expensive to buy because they require safety controls and gas-handling equipment, but they often are less expensive to run because gas usually is cheaper than electricity. Gas infrared is often a good choice for applications that require a lot of energy. Products such as nonwoven and textile webs are examples where gas often is a good choice. [5] * III. DISCUSSION For the designed system a rotary drum dryer is chosen. Rotary drum dryer  is used for drying material with humidity or granularity in the industries of mineral dressing, building material, metallurgy and chemical. It has advantage of reasonable structure, high efficiency, low energy consumption[6]   advantages of drum dryer: | | Suitable for handling liquid or pasty feeds. Product is powdery, flaky form Uniform drying due to uniform application of film. Medium range capacities. Very High thermal efficiency Continuous operation Compact installation Closed construction is possible  [7] By hot air stream, heat for Toasting of the flakes in the drier, or in the oven, is provided instead using flat baking surfaces. Depending on the production type and flow rate, drum dryer satisfies rotating at a constant speed, the slope and the length. The drum is also perforated so that allows the air flow inside. The perforation should not too much large but also prevent the escape of flakes. Also, during the thermal treatment browning, expansion degree, texture, flavour, storage stability is determined. In order to obtain the correct values, the drying temperature and time should be adjusted properly. For the optimization of the system, length of the drier, diameter value, working temperature are affect fixed cost, variable cost and the heat loss from the system is considered. First at all, changing by temperature how affect necessary length is calculated T air in| Z| 210| 2,308504| 215| 2,296091| 220| 2,284367| 225| 2,273274| 230| 2,262764| 235| 2,252792| It is seen that after temperature of the hot air increases, the necessary length of the system decreases . Due to decreasing of necessary length of the system , area decreases also , so fix cost is decreased (Money of dryer + installation) on the other hand according to table 6 T air in| Q system| electric cost| Area| money for cost of dryer + installation| total cost| 210| 146,708| 79222,32709| ,231014| 7949,192995| 87171,52| 215| 150,2011| 81108,57297| 1,224622| 7936,763821| 89045,34| 220| 153,6941| 82994,81886| 1,218584| 7925,023661| 90919,84| 225| 157,1872| 84881,06474| 1,212872| 7913,916768| 92794,98| 230| 160,6802| 86767,31062| 1,20746| 7903,393249| 94670,7| 235| 164,1733| 88653,5565| 1,202325| 7893,408318| 96546,96| TABLE 6 Q loss is increased , by temperature increase so variable cost(electric c ost ) is increased also. owever, due to not big changing in the areas fix cost variable do not change too much by increasing or decreasing the temperature, but Q loss, on the other hand, makes too much difference by increasing or decreasing the temperature and also electrical cost for one kw/h is 0. 15 TL ,the difference of changing one temperature to other one is too big than fix cost. And according to data and tables, the optimum temperature is 2100C due to this reasons do not have a specific curve to us , the result is predicted as the minimum temperature. i. Assumptions * Working time of the plant is assumed as 16 hours Drying time is assumed as 150 seconds (optimum time is given as 2-3 minutes). * Surface temperature of the corn flakes entering the drier is assumed as 25oC(Tfeed=25oC) * Humidity of the air at the inlet and the outlet is assumed as 0. 04 and 0. 09, respectively. * Specific heat of the air is assumed as constant. ( cp,air=1. 02kj/kg*K) * Only the constant drying rate is considered in the calculations since it has a critical moisture of 4. 5-5. 2 %. [4] * The shape of the flakes is assumed as spherical. * Radius of dryer is taken as 0. 082 m The efficiency of the drier is assumed as 85% to realize the calculations. ii. Possible source of errors * The shape of the corn flakes may not be perfect spheres. * Calculations may be done improperly due to the air humidity assumptions. * The corn flakes may be stuck on each other. * IV. RECOMMENDED DESIGN 1. Drawing of proposed design 2. Tables Listing Equipment an Specifications Equipment| Specifications| Rotary Drum Dryer| Heating Medium: Hot Air * Temperature : 225 o C * Humidity in: 0. 04 kg water / kg dry air * Humidity out : 0. 09 kg water / kg dry airLength: 2. 27 mPeripheral Area: 1. 13 m2Material: Stainless SteelType: PerforatedProcessing time: 3 minutes or 150 seconds| TABLE 1 3. Tables for Material and Energy Balances T air, in ( °C)| 210| 215| 220| 225| 230| 235| T air, out ( °C)| 163 . 67| 167. 57| 171. 48| 175. 37| 179. 27| 183. 16| Product rate (kg/s)| 0. 174| 0. 174| 0. 174| 0. 174| 0. 174| 0. 174| Feed rate (kg/s)| 0. 206| 0. 206| 0. 206| 0. 206| 0. 206| 0. 206| Mass of air (kg/s)| 0. 648| 0. 648| 0. 648| 0. 648| 0. 648| 0. 648| H in, air (kj/kg)| 226. 107| 231. 490| 236. 874| 242. 257| 247. 641| 253. 25| H out, air (kj/kg)| 192. 191| 196. 767| 201. 343| 205. 912| 210. 495| 210. 071| Q (kj/s)| 33. 916| 34. 724| 35. 531| 36. 339| 37. 146| 37. 954| Q loss (kj/s)| 22. 006| 22. 530| 23. 054| 23. 578| 24. 102| 24. 626| T feed in ( °C)| 25| 25| 25| 25| 25| 25| T feed out ( °C)| 46. 253| 46. 275| 46. 298| 46. 320| 46. 343| 46. 366| Z, length (m)| 2. 32| 2. 296| 2. 284| 2. 273| 2,263| 2. 253| A, peripheral area (m)| 1. 231| 1. 224| 1. 219| 1. 213| 1. 207| 1. 202| time (seconds)| 150| 150| 150| 150| 150| 150| TABLE 2 4. Process Economics According to 225oC QSYSTEM =157,18 kJ TEDAS ,for 1KW/hour electric , cost is 0. 5TL. —————â €”——————————- Electric cost = QSYSTEM *3600*0,15 Eqn 19 Electric cost=84881,065TL ————————————————- Area =(2*? *r*z)+(2*? *r2) Eqn 20 AREA;=1,2128m2 For money cost dryer and installation a formula is found which is ————————————————- Cost = 5555,56+ 1944,44*area Eqn 21 money cost dryer and installation= 7913. 91TL ————————————————- Total cost = electric cost + money cost dryer +installation EQN 22 Total cost=92794,98TL T air in| Q system| electric cost| area| money for cost of dryer + installation| total cost| 210| 146,708| 79222,32709| 1,231014| 7949,192995| 87171,52| 215| 150,2011| 81108,57297| 1,224622| 7936,763821| 89045,34| 220| 153,6941| 82994,81886| 1,218584| 7925,023661| 90919,84| 225| 157,1872| 84881,06474| 1,212872| 7913,916768| 92794,98| 230| 160,6802| 86767,31062| 1,20746| 7903,393249| 94670,7| 235| 164,1733| 88653,5565| 1,202325| 7893,408318| 96546,96| TABLE 6 FIGURE 1 FIGURE 2 V. CONCLUSION AND RECOMMENDATIONS To sum up, the aim of this design project is to design a toasting oven for corn flakes to decrease its moisture content from %20 to 3-5 %. For this purpose, by using inlet temperature, humidity of air and inlet temperature and moisture content of corn flakes the system is designed. Moreover, during calculations length and radius of dryer, operating time, operating capacity and heat losses from the system is considered. After doing this calculation, the optimization done by altering the working temperature of the system and dryer radius and by considering heat losses from the system. These alterations affect to the both variable and fixed costs and different fixed and variable cost values are obtained. Different total costs values are obtained by using fixed cost and variable cost values and optimization is done. Finally, it is conculed that the dryer length is 2. 27 m when inlet air temperature is 225 oC. However, optimum length is obtained when the inlet air temperature is 215 oC which is 2. 296 m by considering total cost for the system. As a result, theoretical calculations are integrated with practical approach and feasible system is designed for the problem. As a recommendation, for the drying process of corn flakes other dryer types can be used. Fluidized bed dryer can be used for this process. There are some important advantages of this dyer. As an example, this type of dryer has very high thermal efficiency and low processing temperature can be used for the processing. [8] Moreover, the system should be controlled carefully, because any fluctuations in the temperature or other variables could made adverse effects. Temperature of the inlet air should be censored and color censor should be added to outlet of product to control the quality in a best way. VI. ACKNOWLEDGMENT Special thanks for their help and support to our instructors: Prof. Dr. Suat UNGAN Assist. Cem  Ã‚ · BALTACIOGLU * VII. TABLE OF NOMENCLATURE xfeed = kg solid/kg feed xproduct = kg solid/kg product Xfeed = kg water/kg dry solid Xproduct = kg water/kg dry solid Humidity air in= kg water/kg dry air ? =density (kg/m3) Q =volumetric flow rate (m3/s) V=speed (m/s) D= diam eter (m) g= gravitational acceleration (m/s2) Qloss = kJoule Hin = Kj /kg dry air hproduct = kJ/kg Gair = kg dry air/m2. s * VIII. REFERENCES [1] Retrieved on November 2011 from; http://www. process-heating. om/Articles/Drying_Files/d238aadb9d268010VgnVCM100000f932a8c0____ [2] Retrieved on November 2011 from; http://www. rotary-drum-dryer. com/Knowledge/2011-05-08/141. html [3] Retrieved on November 2011 from; http://www. energymanagertraining. com/bee_draft_codes/best_practices_manual-DRYERS. pdf [4] Retrieved on November 2011 from; http://www. barr-rosin. com/products/rotary-dryer. asp [5] Retrieved on November 2011 from; http://www. thinkredona. org/rotary-dryer [6] Retrieved on November 2011 from http://www. blcrushers. com/chanping/2011-08-17/111. html? gclid=CM39p73vxKwCFQkLfAodemc4rw [7] Retrieved on November 2011 from http://www. rrowhead-dryers. com/drum-dryer. html [8]retrieved on November 2011 from http://www. directindustry. com/prod/british-rema-processing-ltd/fluidized -bed-dryers-62696-580253. html * IX. APPENDIX SAMPLE CALCULATIONS Mass values and fractions data: Capacity = 10000 kg per day product As assumed working time = 16 hours per day Product flow rate = (10000kg/day)*(1day/16hours)*(1 hour/3600) Product flow rate=0,174 kg/s Feed flow rate = (0,174*0,95)/0,8 Feed flow rate= 0,206 kg/s Moisture content of feed = 0,2 kg water/kg feed Moisture content of product = 0,05 kg water/kg product xfeed = 0,8 kg solid/kg feed product = 0,95 kg solid/kg product Xfeed = 0,2/0,8(=0,2/0,8=0,25 kg water/kg dry solid) Xfeed= 0,25 kg water/kg dry solid Xproduct = 0,05/0,95(=0,05/0,95=0,053 kg water/kg dry solid) = 0,053 kg water/kg product Xproduct= 0,053 kg water/kg product Temperature humidity data: Temperature of the air in = 225 oC Temperature of the feed = 25 oC Humidity air in = 0,04 kg water/kg dry air Humidity air out = 0,09 kg water/kg dry airH For finding G value, water balance is made as ———————â⠂¬â€Ã¢â‚¬â€Ã¢â‚¬â€Ã¢â‚¬â€Ã¢â‚¬â€Ã¢â‚¬â€Ã¢â‚¬â€Ã¢â‚¬â€Ã¢â‚¬â€- G*Hin + F*Xfeed/[(1+Xfeed)] = G*Hout + P*Xproduct Eqn 1. G*0,04 + 0,206*[0,25/(1+0,25)] = G*0,09 + 0,174*[0,053/(1+0,053)] G= 0,648 kg dry air/s For finding energy balance, Hin , Qloss , Hout are calculated ————————————————- Hin = (1,005+1,88* Hin)*Tair,in Eqn2. (Material and Energy Balances in Food Engineering, Esin, A. 1993, p. 429) Hin = (1,005+1,88*0,04)*225 Hin = 242,25 kJ/kg dry air As efficiency is taken 85% ————————————————- Qloss = 0,15*Hin (85% efficiency) Eqn3. Qloss = 36,33 kJ/kg dry air ————————————————- Qloss in system = G*Qloss Eqn4. Qloss in system = 0,648*36,456 Qloss in system = 23,578 kJ/s ————————————————- Hout = (1,005+1,88* Hout)*Tair,out Eqn5. (Material and Energy Balances in Food Engineering, Esin, A. 1993, p. 429) Hout = 1,1742*Tout Energy balance: ————————————————- G*Hin = G*Hout + Qloss Eqn6. 0,648*243,045 = 0,648*(1,1742Tair,out) + 23,626 Tout air = 175,369oC Use eqn 5. And Hout is found as Hout = 205,91 kJ/s ————————————————- Siebel’s Equation: 33,49*(H2O) + 837,4 Eqn 7. (Material and Energy Balances in Food Engineering, Esin, A. 1993 Eqn 5-33 p. 211) So , by using this equation cp,feed = 1,5 kJ/kg. oC cp,product = 0,98kJ/kg . oC ? feed = 1390 kg/m3 ————————————————- hfeed = cp,feed*Tfeed Eqn. 8 hfeed = 1,5*25 hfeed = 37,5 kJ/kg ————————————————- hproduct = cp,feed*Tproduct Eqn. 9 hproduct = 0,98*Tproduct Energy Balance: G*Hin + F*hfeed = G*Hout + P*hproduct + Qloss Eqn 10. 0,648*243,045 + 0. 206*37. = 0. 648*206. 59 + 0. 174*0. 98* Tproduct + 23. 63 Tproduct = 46,32 oC hproduct = =45,39 kJ/kg As mentioned, assumption of radius of dryer is taken 0. 082 m ————————————————- Gair = 0,648/(? *r2) Eqn. 11 Gair = 30,68 kg dry air/m2. s ————————————————- hair = 1,17*(Gair)0,37 Eqn. 12(Transport Process and Separation Process Principles, Geankoplis , Eqn 9-6-10 p. 583) hair= 4. 5 kj/ kg cp,air=1. 02kj/kg*K ————————————————- HTOG = (Gair*cp,air)/hair Eqn. 13 (Mass Transfer Operation, Treybal, p. 704) HTOG= 7. 535 Tair,in = 225 Tair,out = 175. 369 Tfeed = 25 Tproduct =46. 32 So TG is found by ————————————————- TG = Tair,in – Tair,out Eqn. 14 TG = 49. 06 ————————————————- TM = [(Tair,in – Tfeed) + (Tair,out – Tproduct)]/2 Eqn. 15 TM = 164,52 ————————————————- NTOG = TG/TM Eqn. 16 NTOG = 0,301 ————————————————- z = NTOG*HTOG Eqn 17 z= 2,27 m ————————————————- QSYSTEM=Gair*Hin Eqn 18 =242,25*0,648 QSYSTEM =157,18 kJ TEDAS ,for 1KW/hour electric , cost is 0. 15TL. ————————————————- Electric cost = QSYSTEM *3600*0,15 Eqn 19 Electric cost=84881,065TL ———————————————— Area =(2*? *r*z)+(2*? *r2) Eqn 20 AREA;=1,2128m2 For money cost dryer and installation a formula is found which is ———————————————†”- Cost = 5555,56+ 1944,44*area Eqn 21 (Plant Design and Economics for Chemical Engineers, Max . S. Peters) money cost dryer and installation= 7913. 91TL ————————————————- Total cost = electric cost + money cost dryer +installation EQN 22 Total cost=92794,98TL For finding changes due to increasing temperature to higher or lower (  ±10 ? C) from 225oC Humidityin and Humidityout are taken constant. Humidity air in = 0,04 kg water/kg dry air Humidity air out = 0,09 kg water/kg dry airH T air in| Hin| Q loss| Qloss in SYSTEM| Tair out| Hout| 210| 226,107| 33,91605| 22,00620197| 163,6782| 192,191| 215| 231,4905| 34,72358| 22,53015916| 167,5753| 196,7669| 220| 236,874| 35,5311| 23,05411635| 171,4724| 201,3429| 225| 242,2575| 36,33863| 23,57807354| 175,3695| 205,9189| 230| 247,641| 37,14615| 24,10203073| 179,2666| 210,4949| 235| 253,0245| 37,95368| 24,62598792| 183,1637| 215,0708| TABLE 4 Gair and h are constant , as I found before as hfeed = 37,5 kJ/kg and Gair =30,68 T air in| T product| h product| h air| h TOG| TG| TM| N TOG| z| 210| 46,25308| 45,32802| 4,152621| 7,535866| 46,32179| 151,2126| 0,306336| 2,308504| 215| 46,27571| 45,3502| 4,152621| 7,535866| 47,42469| 155,6498| 0,304688| 2,296091| 220| 46,29834| 45,37238| 4,152621| 7,535866| 48,52759| 160,087| 0,303133| 2,284367| 225| 46,32097| 45,39455| 4,152621| 7,535866| 49,63049| 164,5243| 0,301661| ,273274| 230| 46,3436| 45,41673| 4,152621| 7,535866| 50,73339| 168,9615| 0,300266| 2,262764| 235| 46,36623| 45,43891| 4,152621| 7,535866| 51,83629| 173,3987| 0,298943| 2,252792| TABLE 5 T air in| Q system| electric cost| area| money for cost of dryer + installation| total cost| 210| 146,708| 79222,32709| 1,231014| 7949,192995| 87171,52| 215| 150,2011| 81108,57297| 1,224622| 7936,763821| 89045,34| 220| 153,6941| 82994,81886| 1,218584| 7925,023661| 90919,84| 225| 157,1872| 84881,06474| 1,212872| 7913,916768| 92794,98| 23 0| 160,6802| 86767,31062| 1,20746| 7903,393249| 94670,7| 235| 164,1733| 88653,5565| 1,202325| 7893,408318| 96546,96| TABLE 6 FIGURE1 FIGURE 2 FIGURE 3 According to figures, most suitable temperature is 210oC by making optimization. How to cite Designing a Toasting Oven in Order to Produce Corn Flakes, Essay examples